
c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 2 0 – 1 3 3

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

A scalable and extensible framework for

android malware detection and family attribution

Li Zhang

∗, Vrizlynn L.L. Thing, Yao Cheng

Cyber Security Cluster, Institute of Infocomm Research, A

∗STAR, Singapore

a r t i c l e i n f o

Article history:

Received 23 April 2018

Revised 28 August 2018

Accepted 3 October 2018

Available online 9 October 2018

Keywords:

Android malware detection

Malware family attribution

Online classifier

Incremental learning

a b s t r a c t

The threat from the rampant Android malware has reached an alarming scale, where there

are millions of new malware samples pouring into the application markets every year. In

this paper, we present a new method that can efficiently detect the malware and attribute

it to the corresponding malware family with a high accuracy. A multi-level fingerprint is

firstly extracted from the application by using n-gram analysis and feature hashing. Each of

its sub-fingerprints is then input to a dedicated online classifier. Based on the confidence

scores from the classifiers and our devised combination function, the final decision will

be made on whether the application is benign or malicious or in the scenario of family

attribution, which malware family it belongs to. To the best of our knowledge, this is the

first method developed based on the combination of n-gram analysis and online classifiers.

The incremental learning enabled by the online classifiers facilitates our method to scale

well even for a huge number of applications and adapt easily to different characteristics in

new applications. The parallelized design not only magnifies the impact of distinguishing

features in each sub-fingerprint but also allows our method to be extended, where addi-

tional application features can be added as extra sub-fingerprints. Extensive experiments

were performed. The results show that our method achieved malware detection accuracy of

99.2% on a benchmark dataset with more than 10,000 samples and 86.2% on a dataset with

more than 70,000 in-the-wild samples. Regarding malware family attribution, our method

achieved an accuracy of 98.8% on the top 23 malware families of Drebin dataset.

© 2018 Elsevier Ltd. All rights reserved.

1

S
u
p

a
t
b
h
c
c

m
c

A
o
c
p
i
u
w
s

h
0

. Introduction

mart phones have been an integral part of our daily life. We
se them to make calls, send messages, check emails, take
hotos, and surf the Internet every day. In the year 2016 alone,
 total of 1.5 billion units of smart phones were purchased by
he end users, among which 84.8% of devices were powered

y Android (Gartner, 2016). The popularity of Android devices
as, however, made them the most attractive targets for cyber-
riminals. It is reported that Android developed malware ac-
ounts for 97% of all mobile malware (PulseSecure, 2014) and
∗ Corresponding author.
E-mail addresses: zhang-li@i2r.a-star.edu.sg (L. Zhang), vriz@i2r.a-sta

w

ttps://doi.org/10.1016/j.cose.2018.10.001
167-4048/© 2018 Elsevier Ltd. All rights reserved.
ore than 750,000 new Android malware samples were dis-
overed during the first quarter of 2017 (Lueg, 2017).

In fact, various security measures have been deployed in

ndroid to harden against the installation of malware. One
f the most important measures is the permission-based se-
urity model, which allows end users to manage application

ermissions and hence restricts the application’s accessibil-
ty to sensitive resources. However, a large portion of Android

sers tend to blindly grant the requested permissions, thereby
eakening the theoretically-sound protection. A recent mas-

ive attack is mounted by a malware dubbed FalseGuide,
hich was hidden in over 40 applications on Google Play from
r.edu.sg (V.L.L. Thing), cheng_yao@i2r.a-star.edu.sg (Y. Cheng).

https://doi.org/10.1016/j.cose.2018.10.001
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.10.001&domain=pdf
mailto:zhang-li@i2r.a-star.edu.sg
mailto:vriz@i2r.a-star.edu.sg
mailto:cheng_yao@i2r.a-star.edu.sg
https://doi.org/10.1016/j.cose.2018.10.001

c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 2 0 – 1 3 3 121

November 2016 to April 2017 and infected more than 2 million
Android devices (The Hacker News, 2017).

The alarming threat of Android malware has driven ac-
tive research for good malware detection approaches. A num-
ber of methods propose to use discriminating features from
the applications, such as requested permissions (Sanz et al.,
2013), API calls (Aafer et al., 2013), dynamic behaviors (Afonso
et al., 2015; Burguera et al., 2011), or a combination of multiple
features (Arp et al., 2014; Lindorfer et al., 2015; Yerima et al.,
2015), and take advantage of similarity comparison metrics or
machine learning algorithms to distinguish between the mal-
ware and benign applications. These methods typically rely
on expert analysis to predetermine specific features to be pro-
cessed, which may exclude other important features in the ap-
plications. Besides, with the discriminating features explicitly
defined, it is easier for malware writers to update their mal-
ware accordingly so as to evade detection (Abou-Assaleh et al.,
2004).

On the other hand, malware detection methods can also
be based on n -gram analysis. With the captured features be-
ing implicit in the extracted n -grams, it would be harder to fool
the detection algorithm. Several methods (Canfora et al., 2015;
Kang et al., 2016) propose to extract n -gram opcodes from the
disassembled application byte code and use machine learning
algorithms to automatically distill features from the n -grams.
In addition to the instruction n -grams, a recent work (Karbab
et al., 2016) investigated the benefit of considering extra infor-
mation in the application APK file, such as a permission vec-
tor from the XML file, byte n -grams of the DEX file, as well as
byte n -grams of the whole APK file. In particular, each set of
these features forms a sub-fingerprint of the application. The
fingerprint of the application under test (AUT) is then com-
pared with those of collected malware in a database by using
Jaccard Similarity. Based on the similarity score and a static
threshold, the application will be classified accordingly. There
are several drawbacks in this method. Firstly, the AUT needs
to be compared with all the entries in the malware database,
which prevents this method from scaling well for a large mal-
ware database. Secondly, all the feature elements are consid-
ered with the same weight, undermining the impact of the
more interesting features. Lastly, a static threshold is required
to classify the application, which is hard to determine in prac-
tice.

In this paper, we firstly propose a tailored design of the
application fingerprint, where n -grams of the XML strings are
used instead of the permission vector. This way, besides per-
missions, additional important features in the XML file, such
as utilized hardware components, application components,
and intents, will also be considered for malware detection.
Instead of using Jaccard similarity-based comparison and a
static threshold as in Karbab et al. (2016) , a parallel online
classifier-based approach is used in our method. That is, a spe-
cific online classifier is trained for each sub-fingerprint. Apart
from automatically increasing the weight of the more discrim-
inating features, the utilized online classifier enables incre-
mental learning, which brings in two obvious advantages. The
first one is that our method can better handle the huge num-
ber of malware samples, hence ensuring its scalability. The
second one is that the built model in our method can be eas-
ily updated with new malware samples. This is in contrast
to methods using batch learning-based classifiers, where the
classifier needs to be re-trained with all the samples.

Besides malware detection, our method can also be used
for malware family attribution. Malware family attribution is
an important part of threat assessment and mitigation plan-
ning. An efficient automatic family attribution of the malware
will allow malware analyst to focus on new malware instead
of variants of existing malware families. We highlight that the
main goal of our proposed method is to detect variants of ex-
isting malware families, which make up more than 98% of new
malware samples (Sun et al., 2017).

Both malware detection and family attribution belong to
classification problems, where the former is a two-class prob-
lem and the latter is a multi-class one. To classify an AUT,
the decision scores from each classifier will be fused by our
devised combination function which will then output the fi-
nal decision of the application being in a specific class. In the
scenario of malware detection the specific class will be either
malware or benign application, while in the scenario of mal-
ware family attribution it will be a particular malware family.
As will be shown in the experimental results, for malware de-
tection, our method achieved an accuracy of 99.2% on a bench-
mark dataset with more than 10,000 samples and an accuracy
of 86.2% on an in-the-wild dataset with more than 70,000 sam-
ples. For malware family attribution, our method obtained an
accuracy of 98.8% on the top 23 malware families (family sizes
varying from 883 to 21 samples) of Drebin dataset.

To the best of our knowledge, we propose the first combi-
nation of n -gram analysis and online classifiers to tackle the
problem of Android malware detection and family attribution.
The primary contributions of this work are as follows:

• We propose the use of n -grams of XML strings to generate
android application sub-fingerprint. As to be shown by the
experimental results, the XML string-based sub-fingerprint
achieves much better accuracy compared to the permis-
sion vector-based sub-fingerprint. This sub-fingerprint can
be used together with other sub-fingerprints such as those
derived from n -grams of the DEX file, the disassembled DEX
file, and the whole APK file to further enhance the perfor-
mance.

• We propose a parallel classifier-based model, where a ded-
icated classifier is assigned for each sub-fingerprint. There
are three merits: firstly, the machine learning-based model
can automatically distill the important features from the
sub-fingerprints, hence avoiding being deceived by the un-
related features. Secondly, compared to the peer-matching
approach in Karbab et al. (2016) , it removes the need to
compare the AUT with each malware in the database and
hence greatly improves the efficiency. Thirdly, compared
with simply concatenating all the sub-fingerprints and us-
ing one classifier, our method is featured by better accuracy
and shorter training time.

• The online classifiers used in our method can incremen-
tally learn from new samples, which not only avoids the
need of a huge memory that is often required by batch
learning-based methods but also enables the trained clas-
sifiers to be adaptable to population drift of malware (Singh
et al., 2012) and maintain a good classification accuracy.

122 c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 2 0 – 1 3 3

d
t
t
fi

e
a
S

2
g

2

A
t
a
fi
a

i
m
a
m
t
p
c
r
m
t
t

(
a
(

a
p
a
a
c
s

2

T
t

2
fi
a
fi
s
h

a
a
o
i
o
a

Table 1 – Representative XML strings extracted from a
DroidKungFu3 malware sample

Meta-data com.livegame.metadata.COPYRIGHT

com.livegame.metadata.AUTHORS

com.livegame.metadata.WEBSITE_LABEL

com.livegame.metadata.WEBSITE_URL

com.livegame.metadata.EMAIL

Permission android.permission.WRITE_EXTERNAL_STORAGE

android.permission.INTERNET

android.permission.READ_EXTERNAL_STORAGE

android.permission.CHANGE_WIFI_STATE

android.permission.RECEIVE_BOOT_COMPLETED

Intent-filter com.livegame.action.PICK_FILE

com.livegame.action.PICK_DIRECTORY

android.intent.action.GET_CONTENT

android.intent.category.OPENABLE

android.intent.action.BOOT_COMPLETED

Activity com.livegame.distribution.EulaActivity

com.google.update.Dialog

com.google.ads.AdActivity

com.adwo.adsdk.AdwoSplashAdActivity

com.adwo.adsdk.AdwoAdBrowserActivity

Service com.google.update.UpdateService

Content
provider

com.livegame.filemanager

Broadcast
receiver

com.google.update.Receiver

Feature android.hardware.touchscreen

m
p
n
t
n
w
i
B
a
i
t
s
a

m
a
a

2

g
d
n

s
t
v

2
t
l
d
c

The paper is organized as follows: Section 2 introduces An-
roid application basics and describes the techniques used

o generate the application fingerprint. Section 3 illustrates
he proposed method which is based on the multi-level sub-
ngerprints and parallel incremental learning. In Section 4 ,
xperimental results and some discussion about the method

re presented. A more detailed review of related works is in

ection 5 , and the paper is concluded in Section 6 .

. Android application basics and fingerprint
eneration

.1. Android application basics

ndroid applications are written mainly in Java, which are
hen compiled along with data and resource files into an

rchive file called Android Package Kit (APK). The APK is the
le distributed in the application market and the one used for
pplication installation.

There are four different types of application components,
.e., activity, service, broadcast receiver , and content provider . Com-

unications among these components are achieved using
 messaging object called intent . In Android, the application

ust declare all its components in an XML manifest file inside
he APK. Intent filters , which declare capabilities of the com-
onents, are often also included. Additional information de-
lared in the XML file involve user permissions the application

equires (e.g., CALL_PHONE , SEND_SMS , and INTERNET), the
inimum API level, as well as the hardware and software fea-

ures to be used by the application (e.g., GPS, camera or multi-
ouch screen).

Besides the XML manifest file, an APK comprises a DEX file
sometimes multiple DEX files) which contains all the classes
nd is to be executed in its own instance of virtual machine
i.e., Dalvik Virtual Machine (DVM) or Android Runtime (ART)),
 lib folder which contains the compiled code specific to the
rocessor software layer, a META_INF folder which contains
pplication certificate, list of resources and SHA-1 digest of
ll resources, etc., and a resources.arsc file which contains pre-
ompiled resources, as well as a res folder which contains re-
ources that are not compiled into the resources.arsc file.

.2. Application fingerprint generation

he application fingerprint in our method is generated by ex-
racting multi-level features (Karbab et al., 2016; Masud et al.,
008) from the application. It is composed of several sub-
ngerprints from different contents of the application, such

s the XML (manifest) file, the DEX file, the disassembled DEX

le (in short, the assembly file), and the whole APK file. Each

ub-fingerprint is created using n -gram analysis and feature
ashing.

The n -gram analysis (Cavnar and Trenkle, 1994) extracts
 sequence of n -item features from a given file. For the DEX

nd APK file, n -grams are extracted with the granularity level
f per byte, while for the assembly file, the granularity level

s per instruction. For the XML file, which is in the form

f binary XML in the APK, we convert it to a human read-
ble format and then extract n -gram XML strings. Unlike the
ethod in Karbab et al. (2016) , which uses only the requested

ermissions in the XML file to derive a sub-fingerprint, the
 -gram XML strings in our method convey more informa-
ion about the application, such as the application compo-
ents, filtered intents, and the required hardware and soft-
are features. All these information are helpful to better

dentify a malware. For example, some malware will list a
OOT_COMPLETED intent in the XML file such that malicious
ctivities will be triggered immediately after the smart phone
s re-booted. Table 1 lists some representative XML strings ex-
racted from a DroidKungFu3 malware sample. Note that the
trings are reorganized into 8 categories just for better read-
bility.

The n -gram size n is a parameter which controls the di-
ensions of the underlying feature space for representing an

pplication. Its impact on classification accuracy of Andorid

pplications have been studied in several works (Canfora et al.,
015; Hanna et al., 2012; Kang et al., 2016). The chosen n -
ram size should achieve a good balance between multi-
imensional representation of the application and reasonable
umber of unique features.

To generate each sub-fingerprint, we convert the corre-
ponding sequence of n -grams to a bit-vector through fea-
ure hashing (Weinberger et al., 2009). Commonly used feature
ectorization strategies such as those based on tf-idf (Larson,
010) have to keep an in-memory mapping from n -grams
o feature indexes. Besides consuming lots of memory for a
arge dataset, the mapping requires a full pass over the whole
ataset. Hence, such strategies are not suitable for our in-
remental learning based model. In contrast, feature hashing

c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 2 0 – 1 3 3 123

applies a hash function to the n -grams to determine their in-
dexes directly, which is a high-speed and memory-efficient al-
ternative and helps significantly reduce the high-dimensional
feature spaces and accelerate malware triage (Jang et al., 2011).
In our method, each hashed n -gram has a corresponding bit
in the bit-vector to indicate whether the n -gram exists (be-
ing ‘1’) or not (being ‘0’). That is, we consider only whether a
specific n -gram exists or not instead of its integer counts. The
bit-vector length l is another crucial parameter, which deter-
mines the approximation error (more collisions for smaller l)
and the processing efficiency (inversely proportional to l).

Hanna et al. (2012) analyzed 30,000 Android applications
to determine the two parameters above. It was found that for
n -grams of the assembly file, the best trade-off between ac-
curacy and processing efficiency was achieved when n = 5
and l = 240 , 007 ≈ 2 18 . In our implementation, we used the
same values for these two parameters for all sub-fingerprints
and achieved good results, as will be shown in the experi-
ments. Nonetheless, as discussed in Section 4.4 , different n -
gram sizes and bit-vector lengths can be used for each sub-
fingerprint to achieve the best trace-off.

3. The parallel online classifiers based

approach

The application fingerprint, which consists of multiple sub-
fingerprints (in the form of bit-vectors), is an abstracted rep-
resentation of the application. Each bit in the bit-vector can
be deemed a feature. Similar applications share similar bit-
vector patterns, while the divergent ones would have very
different bit-vectors. We use machine learning algorithms to
automatically distill important features that facilitate the dis-
crimination between malware and benign applications or
among different malware families. The bit-vector form of the
application sub-fingerprints allows them to be efficiently pro-
cessed by machine learning algorithms.

Each bit-vector can be represented as � BV ∈ { 0 , 1 } l , where l is
the length of the bit-vector. As � BV is typically a sparse vector of
fixed length with bits being either ‘0’ or ‘1’, in our method, in-
stead of storing the bit-vector itself, the indexes of the (usually
rare) ‘1’ bits are stored. This helps greatly reduce the storage
overhead and at the same time ensures that the bit-vector can
be easily recovered.

Instead of concatenating the bit-vector of each sub-
fingerprint into a single bit-vector and then use it to train
one classifier, in our method, a dedicated classifier is used for
each sub-fingerprint. An overview of the proposed method is
shown in Fig. 1 , where four sub-fingerprints (derived from the
XML file, DEX file, assembly file and the whole APK file, respec-
tively) are used. As will be shown by the experimental results
in Section 4 , such a design helps magnify the impact of the
possibly few discriminating features and hence improve the
classification accuracy.

Regarding the machine learning algorithm, we choose to
use the online passive-aggressive (PA) classifier (Crammer
et al., 2006). An online classifier operates in rounds, in each
of which it receives a sample or a mini-batch of samples as
input for prediction and then receives the true label of the
sample for updating the model. As the trained model can
incrementally learn from the stream of incoming samples,
this type of learning is called incremental learning .

The PA classifier is a linear classifier, which works well for
problems with a large number of features and can reach ac-
curacy levels comparable to non-linear classifiers while tak-
ing less time to train and use (Yuan et al., 2012). Note that
the sparse bit-vector form of the sub-fingerprints essentially
projects the application features into a high-dimensional
space. According to Cover’s Theorem (Cover, 1965), these
transformed features would have a high probability of be-
ing linearly separable. For the two-class malware detection
problem, the PA classifier fits a decision hyperplane between
malware and benign applications. Suppose on round i a sub-
fingperint of the sample is � BV i ∈ { 0 , 1 } l and the label of the
sample is y i ∈ {−1 , +1 } , where −1 corresponds to benign appli-
cation and +1 to malware. The built model of the PA classifier
is based on a vector of feature weights denoted as � ω ∈ R

l , with
the vector length l being the same as that of � BV i . For round i ,
the existing model can be represented as ˆ y i = sign (� ω i · � BV i) ,
where the predicted label for the sample ˆ y i is determined
based on the sign of the inner product of � ω i and

� BV i . The mar-
gin of the sample (� BV i , y i) with respect to the existing model
is given by y i (� ω i · � BV i) and the loss at the sample is defined
as shown in Eq. (1) . In other words, a margin not less than 1
means that a correct prediction has been made and the loss
is 0.

For PA classifier, the model is only updated if the loss is not
0 (i.e., 1 − y i (� ω i · � BV i) when the margin is less than 1). The ob-
jective is to change the feature weights as minimal as possible
but with the wrongly predicted sample classified correctly in
the updated model. That is, the updated weight vector � ω i +1 is
the solution to the constrained optimization problem in Eq. (2) .
As detailed in Crammer et al. (2006) , this optimization prob-
lem has a simple closed form solution and can be efficiently
solved.

For the multi-class malware family attribution problem,
the one-versus-all (OvA) strategy can be used, where a single
binary classifier described above is trained for each class, with
members of the specific class labeled as +1 and all other sam-
ples as −1 . The label of the sample is then predicted based on
the classifier with the highest confidence score.

� (� ω i ; (� BV i , y i)) = max { 0 , 1 − y i (� ω i · � BV i) } (1)

� ω i +1 = argmin

� ω ∈ R l
1
2

‖ � ω − � ω i ‖ 2

subject to � (� ω ; (� BV i , y i)) = 0
(2)

Details about how the PA classifier is used in our method
for training and classifying an AUT are presented below.

3.1. The training stage

The PA classifiers will be trained in parallel by the correspond-
ing sub-fingerprints of the applications. In the scenario of
malware detection, each sub-fingerprint is associated with
a label of either malware or beingn_app , while in the sce-
nario of malware family attribution, each sub-fingerprint is

124 c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 2 0 – 1 3 3

Fig. 1 – Android malware detection and family attribution with parallel PA classifiers.

Fig. 2 – PA classifiers incrementally trained with new

samples.

a

s

i
f
f
u
b
o

o
j
c
t
u
t

3

T
a
s
i
n
s

Fig. 3 – Normalized confusion matrix of the top 23 Drebin

malware families using the assembly and xml-based

sub-fingerpints and the combination function of average of
scores.

a
o

w

A
v
a
o
t
t
a
c
i

i

t

ssociated with the corresponding malware family name,
uch as AnserverBot, DroidKungFu3 , and GoldDream .

In our method, the training dataset of possibly massive size
s divided into mini-batches (a.k.a. chunks), which are then

ed to the model for training one by one. This way, it becomes
easible to learn from the huge number of applications that
sually can not fit into system memory. Naturally, the mini-
atch size should be determined based on the available mem-
ry space.

On the other hand, in practice, newly assessed malware
r benign applications (i.e., with true labels) become available

ust gradually over time. These new applications can be ac-
umulated and form new mini-batches before they are fed to
he trained model. As depicted in Fig. 3 , the model can contin-
ously adapt itself to accommodate new application charac-
eristics and hence maintain desired classification accuracy.

.2. The decision stage

he decision function of each trained PA classifier will output
 confidence score of the AUT being in a specific class. In the
cenario of two-class malware detection, only the score for be-
ng a malware (i.e., class ‘1’) will be generated, while in the sce-
ario of multi-class malware family attribution, a confidence
core is generated for each malware family. In both scenarios,
 positive number means the AUT is predicted to be a member
f the specific class, while a negative number means not.

Suppose a total of K classifiers have been trained for mal-
are family attribution, denoted as PA k , k ∈ [1, K]. Given an
UT, its sub-fingerprints are firstly generated, which are K bit-
ectors represented as � BV k . Each sub-fingerprint is then used

s input to the corresponding classifier. The classifiers will
utput a list of scores indicating the confidence of the applica-
ion being a member of the corresponding family. We denote
he list of confidence scores from classifier PA k as � S k . If there
re M different malware families, denoted as C 1 , . . . C M

, then

ardinality of the list | � S k | = M . The element in the score list � S k
s denoted as s k (C i), where s k (C i) ∈ R and i ∈ [1, M]. For example,
f the sub-fingerprints are based on the XML file, the DEX file,
he assembly file, and the whole APK file, respectively, the four

c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 2 0 – 1 3 3 125

Table 2 – The datasets used in our experiments

Dataset Category Name Size Time of creation

Benchmark Malware AMGP 928 Aug. 2010–Oct. 2011
Drebin 5560 Aug. 2010–Oct. 2012

In-the-wild Malware - 33,259 Jan. 2014–Aug. 2014
Benign - 37,224 Jan. 2014–Aug. 2014

1 based on dataset at https://sites.google.com/view/
casandrantu/dataset .
lists of confidence scores from the classifiers will be:

[s 1 (C 1) , s 1 (C 2) , . . . , s 1 (C M

)] PA XML

[s 2 (C 1) , s 2 (C 2) , . . . , s 2 (C M

)] PA DEX

[s 3 (C 1) , s 3 (C 2) , . . . , s 3 (C M

)] PA INS

[s 4 (C 1) , s 4 (C 2) , . . . , s 4 (C M

)] PA APK

(3)

The K list of confidence scores can be consolidated through
different combination functions so as to make the final clas-
sification decision. The most intuitive way is majority voting ,
where the maximum value within each list of scores is picked
up to make an intermediate decision (i.e., the malware family
corresponding to the maximum value) and the K intermedi-
ate decisions will vote for the final decision. That is, for each
classifier PA k , the intermediate decision is the family C j with
s k (C j) = max (� S k) . If we represent the intermediate decision
by classifier PA k as a binary characteristic function shown in
Eq. (4) , the final decision made with the majority voting rule
will be in the form shown in Eq. (5) . In case of equal votes,
we use the following way to remove uncertainty: the confi-
dence scores supporting each equal vote will be summed and
the vote with the largest sum will be the final decision. As the
confidence scores are in the field of R , in practice, there will
be always a vote with a larger sum than other votes.

T k (C j) =

{

1 , when s k (C j) = max (� S k)
0 , otherwise

(4)

PA vote (� BV) = C j , if T (C j) = max i ∈ [1 ,M] (T (C i))

where T (C i) =

K ∑

k =1

T k (C i) , i ∈ [1 , M]
(5)

Alternative combination functions such as the average of
scores and maximum of scores can also be used, where the K
scores for each family C i are firstly combined (using mean or
max) and the family corresponding to the maximum com-
bined score will be the final decision of the classifiers. The
former can be represented with Eq. (6) , while the latter is in
the form shown in Eq. (7) . As the confidence scores are signed
values, the combination function of product of scores is not as
effective and hence not used in our method.

PA avg (� BV) = C j , if S̄ (C j) = max i ∈ [1 ,M] (̄S (C i))

where S̄ (C i) =

1
K

K ∑

k =1

s k (C i) , i ∈ [1 , M]
(6)

PA max (� BV) = C j , if ̃ S (C j) = max i ∈ [1 ,M] (̃ S (C i))

where ̃ S (C i) = max k ∈ [1 ,K] s k (C i) , i ∈ [1 , M]
(7)

In the scenario of malware detection, each score list � S k
just contains one instead of M scores. The three combination
function described above are still applicable after some minor
changes. The majority voting method now votes for whether
there are more positive (indicating malicious) or negative (in-
dicating benign) scores; if there are equal votes, the positive
and negative confidence scores are each summed up and the
final decision is made based on the sign of the sum with a
larger absolute value. The average of scores method now sim-
ply averages the scores and the final decision is made based
on the sign of the averaged value, while the maximum of scores
method simply chooses the value with the maximum absolute
value and the final decision is also made based on the sign of
the chosen value. It may be noted that for malware detection
the majority voting method and average of scores method are es-
sentially the same and would always make the same decision.

4. Evaluation and discussion

4.1. Experimental setup and dataset

To generate the application fingerprint, the same open-source
tools as in Karbab et al. (2016) were used. The xxd tool was
used to create hex dumps of the APK and DEX file. The dis-
assembler tool dexdump , provided by Android SDK, was used
to create the assembly file, while the aapt tool, which is also
from Android SDK, was used to dump out the XML strings (i.e.,
using the command aapt dump xmlstrings). The above
tools were used together with data extraction tools such as
awk and grep to generate the n -grams of each sub-fingerprint.
The sequences of n -grams were then hashed to bit-vectors of
length 2 18 based on the occurrence of each n -gram by using
the hashingVectorizer utility of scikit-learn toolkit (Pedregosa
et al., 2011). The classifiers used in our experiments were also
built from this toolkit. All the experiments were conducted on
a desktop with Intel Core i7-6700 CPU @ 3.4 GHz (8 cores), 16
GB RAM, and 64-bit Ubuntu Linux 14.04 LTS.

Several sets of experiments were performed to evaluate
the effectiveness and efficiency of the proposed method. The
datasets used in our experiments are listed in Table 2 . The
benchmark datasets include the malware samples from An-
droid Malware Genome Project (AMGP) (Zhou and Jiang, 2012)
and Drebin (Arp et al., 2014), both of which are commonly used
in the literature. Samples of the in-the-wild dataset 1 were col-
lected by Narayanan et al. (2017, 2016) and created in a span of
224 days from 1 Jan. 2014 to 13 Aug. 2014. The reason for also
using the in-the-wild dataset is that high-performance mal-
ware detection methods validated by the benchmark dataset
are often not as effective in the wild (Allix et al., 2016). We
would like to exhibit the use of our method in a real-world
setting and examine its effectiveness in such a setting.

4.2. Evaluation on the AMGP dataset

As the multi-level fingerprint used in our method is inspired
by the method proposed in Karbab et al. (2016) , we firstly adopt
the same experimental setup so as to facilitate comparison

https://sites.google.com/view/casandrantu/dataset

126 c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 2 0 – 1 3 3

Table 3 – Top 8 malware families of android malware
genome project used in evaluation

Malware Family name Family size

AnserverBot 187
BaseBridge 122
DroidDreamLight 46
DroidKungFu3 309
DroidKungFu4 96
Geinimi 69
GoldDream 47
KMin 52

w
A
r
l

o
w
b
a
l
m
i
t
b

e
d
i
r
e

c
f
a

a
c

a
p

a

T
c
fi
a
F

fi
t
b
p
a
e
c
t

Table 4 – Performance results of the peer-matching ap-
proach proposed in Karbab et al. (2016) using different
sub-fingerprints and the combination function of major-
ity voting

Fingerprint subset Performance metrics

Precision

(%)
Recall
(%)

F 1 -score
(%)

Apk 16.3 47.2 13.4
Assembly 91.3 92.5 91.8
Dex 57.4 83.3 59.1
Permission 82.4 84.2 80.6
Assembly, Permission, Dex, Apk 88.7 92.1 88.5
Assembly, Permission, Dex 91.2 92.7 91.5
Assembly, Permission 93.5 93.7 93.6
Xml 95.4 95.1 94.5
Assembly, Xml, Dex, Apk 93.2 95.6 93.2
Assembly, Xml, Dex 95.4 96.6 95.9
Assembly, Xml 95.4 96.6 95.9

Table 5 – Performance results of the proposed parallel PA-
approach using different sub-fingerprints and combina-
tion functions, where avg, mv, max denotes average, ma-
jority voting and maximum, respectively

Fingerprint subset Performance metrics

Precision

(%)
Recall
(%)

F 1 -score
(%)

Apk 67.5 30.2 29.4
Assembly 96.8 96.5 96.5
Dex 95.0 93.1 93.4
Xml 98.5 98.1 98.1
{Assembly, Xml, Dex, Apk} avg 98.7 98.4 98.4
{Assembly, Xml, Dex} avg 98.5 98.1 98.1
{Assembly, Xml} avg 98.7 98.4 98.4
{Assembly, Xml, Dex, Apk} mv 97.4 96.8 96.8
{Assembly, Xml, Dex} mv 97.2 96.5 96.6
{Assembly, Xml} mv 98.5 98.1 98.1
{Assembly, Xml, Dex, Apk} max 96.7 95.5 95.4
{Assembly, Xml, Dex} max 98.5 98.1 98.1
{Assembly, Xml} max 98.5 98.1 98.1

b
fi
9
o

f
s
a
u
i
s
m
n

s
p

ith the method. The malware samples used are from the
MGP dataset. A balanced malware dataset was created by

andomly choosing 46 samples from each of the 8 largest fami-
ies in the malware database (see Table 3), where 46 is the size
f the 8 th largest family DroidDreamLight . The balanced mal-
are dataset is then concatenated with 46 randomly selected

enign applications (labeled as Benign_Apps) to form the evalu-
tion dataset to be used. The benign applications were down-
oaded from Google Play and created in the same period as the

alware samples (i.e., from 2010 to 2011). To ensure they are
ndeed benign, the downloaded samples were checked using
he VirusTotal service 2 and only those not flagged as malicious
y any anti-virus scanner were kept.

In each evaluation, 70% of samples in each family of the
valuation dataset were randomly selected as the training
ataset, while the remaining 30% samples were used for test-

ng. The evaluation was repeated for three times and the final
esult was obtained by averaging the results from the three
valuations.

The performance metrics used in the evaluation are pre-
ision, recall, and F 1 -score. A higher precision indicates fewer
alse positives, while a higher recall indicates fewer false neg-
tives. The F 1 -score considers both the precision and recall,
nd is a commonly used parameter to measure the overall ac-
uracy.

We replicated the experiments using the peer-matching
pproach proposed in Karbab et al. (2016) . For ease of com-
arison, the results obtained using the APK, DEX, assembly,
nd permission-based sub-fingerprints are listed in Table 4 .
he underlying combination function is majority voting. It
an be seen that among different compositions of the sub-
ngerprints, the best result was achieved when combining the
ssembly and permission-based sub-fingerprints, where the
 1 -score is 93.6%.

The results for our proposed XML string-based sub-
ngerprint are also listed in Table 4 . It is interesting to find

hat the XML string-based sub-fingerprint achieved much

etter result (with F 1 -score being 94.5%) than that of the
ermission-based sub-fingerprint (with F 1 -score being 80.6%)
nd even better than that of the best combination of Karbab
t al. (2016) described above. This highlights the merit of
onsidering additional information in the XML file besides
he requested permissions. When combined with assembly-
2 https://www.virustotal.com .

o
s
m

ased sub-fingerprint or assembly-based and DEX-based sub-
ngerprints, the F 1 -score both can be further improved to
5.9%. Nonetheless, the former takes advantage of two instead

f three sub-fingerprints, and hence is more resource efficient.
Then we tested our parallel PA-based method under dif-

erent combination functions, i.e., majority voting, average of
cores, and maximum of scores. The evaluation dataset was
lso split in a stratified fashion with 70:30 ratio and the eval-
ation was repeated for three times. Sice the size of the train-

ng dataset is relatively small, all the training samples of each

ub-fingerprint were fed to the corresponding classifier in one
ini-batch. That is, the PA classifier is trained in the man-

er of a batch learner. As shown in Table 5 , the averaged F 1 -
core of the XML string based sub-fingerprint was further im-
roved to 98.1%. The obvious improvement compared to 94.5%

f the same sub-fingerprint using the peer-matching approach

hown in Table 4 should be due to the classifier assigning
ore weights to the discriminating features, which in turn

https://www.virustotal.com

c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 2 0 – 1 3 3 127

Table 6 – Performance results for concatenating different
sub-fingerprints and using a single PA classifier

Concatenated Performance metrics

sub-fingerprints Precision

(%)
Recall
(%)

F 1 -score
(%)

Assembly, Dex 95.4 93.6 93.9
Assembly, Xml 97.9 97.6 97.6
Dex, Xml 95.4 93.6 93.9
Assembly, Xml, Dex 95.4 93.6 93.9
Assembly, Xml, Dex,
Apk

93.7 93.0 92.9

Table 7 – Top 23 malware families of Drebin dataset used

in evaluation

Family name Size Family name Size

FakeInstaller 883 Glodream 69
DroidKungFu 653 ExploitLinuxLotoor 68
Plankton 625 FakeRun 61
Opfake 607 SendPay 59
GinMaster 331 Gappusin 58
BaseBridge 329 Imlog 43
Iconosys 152 Yzhc 37
Kmin 147 SMSreg 34
FakeDoc 130 Jifake 27
Adrd 91 Boxer 24
Geinimi 87 MobileTx 21
DroidDream 75

Table 8 – Performance results of the proposed method for
family attribution on the top 23 families of Drebin mal-
ware

Fingerprint subset Performance metrics

Precision

(%)
Recall
(%)

F 1 -score
(%)

Accuracy
(%)

Assembly 96.4 96.1 96.0 98.3
Xml 96.4 95.1 95.5 98.1
{Assembly, Xml} avg 97.2 95.9 96.4 98.8
{Assembly, Xml} mv 97.2 95.7 96.2 98.6
{Assembly, Xml} max 97.2 95.7 96.2 98.6

improved the classification accuracy. Besides, from Table 5 , it
can also be observed that the combination of the assembly-
based and XML string-based sub-fingerprints consistently
achieve the best classification accuracy under each of the
three combination functions. When the combination function
of average of scores is used, the averaged F 1 -score is the best
at 98.4%, which is much higher than the best result obtained
in Karbab et al. (2016) (F 1 -score at 93.6%).

Regarding the runtime performance, the averaged training
time for the classifiers assigned to the XML, assembly, DEX,
and APK-based sub-fingerprint is 0.03 s, 0.41 s, 3.43 s and
8.02 s, respectively. The averaged testing time of the whole
testing dataset for the four classifiers are all below 0.01 s ex-
cept for the classifier for APK-based sub-fingerprint (at 0.30 s).
Although these sub-fingerprints are of the same bit-vector
length, they have varying sparsity. It seems that the more
sparse the bit-vector is, the more efficient the PA classifier can
process.

We also experimented with concatenating several sub-
fingerprints into a large bit-vector and using a single PA clas-
sifier for the family attribution. The averaged precision, recall,
and F 1 -score for concatenation of different sub-fingerprints
are listed in Table 6 . The parallel PA-based approach obviously
outperformed the single PA-based one, which confirms that
assigning a dedicated classifier for each sub-fingerprint helps
magnify the impact of distinguishing features.

4.3. Evaluation on the Drebin and in-the-wild dataset

The remaining experiments performed for method evaluation
are to be presented in two sub-sections, where the first one
is for evaluating the proposed method on malware family at-
tribution using the Drebin malware dataset and the second
one is for evaluating it on malware detection using both the
Drebin dataset and the in-the-wild dataset. As the assembly
and XML-based sub-fingerprint achieved much better F 1 -score
and efficiency than other sub-fingerprints, in the following ex-
periments, we will only use these two sub-fingerprints. Be-
sides, we will use accuracy as an additional evaluation metric
so as to facilitate comparison with existing methods.

4.3.1. Malware family attribution

The 5560 malware samples contained in the Drebin dataset
belong to 179 families. As the utilized aapt tool can not prop-
erly extract XML strings from some samples, the final number
of workable Drebin samples in our experiments is 5375. We
follow the setup of a recent notable family attribution method
(Dash et al., 2016), where the performance is evaluated on the
largest 23 families and the achieved classification accuracy is
94%. An overview of the largest 23 families is presented in
Table 7 . All the other families contain malware less than 20
samples.

The evaluation dataset was also split in a stratified fashion
with 70:30 ratio. The three-time averaged evaluation results
on the 23 malware families, which consists of 4611 malware
samples, are listed in Table 8 . It can be seen that the combi-
nation of the assembly and XML string-based sub-fingerprints
with average of scores achieved the best accuracy, at 98.8%.

To further investigate the family attribution performance
of our method for each malware family, we used the con-
fusion matrix, which provides a quick graphical overview.
Fig. 3 shows the normalized confusion matrix of one round us-
ing the assembly and XML string-based sub-fingerprints and
the combination function of average of scores. Each matrix el-
ement is normalized by dividing it with the sum of the corre-
sponding row. It can be observed that for many malware fam-
ilies all the testing samples were correctly classified, such as
the largest 9 malware families. Nonetheless, a large portion of
malware samples in the Boxer family were misclassified into
the FakeInstaller family. There are two reasons for this. One is
that there is a limited number of malware samples (only 24
samples) in the Boxer family, thereby refraining the classifiers
from distilling enough distinguishing features for this fam-
ily. The second one is that samples in the Boxer family have

128 c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 2 0 – 1 3 3

Table 9 – Performance results of the proposed method for
malware detection on 5,375 Drebin malware and 5,000
benign applications

Fingerprint subset Performance metrics

Precision

(%)
Recall
(%)

F 1 -score
(%)

Accuracy
(%)

Assembly 98.4 98.4 98.4 98.4
Xml 98.8 98.8 98.8 98.8
{Assembly, Xml} avg 99.2 99.1 99.2 99.2
{Assembly, Xml} max 98.5 98.4 98.4 98.4

v
e
t
n

l
s
i
P
a
b
w

4
W
e
c
w
i
e
fl
r
N
t
A
a
e

p
a
2
T
i
t
t
e
c
a
p
a
a
i
e
b

m

Fig. 4 – Accuracy of the proposed method, the linear SVM

trained once, and the linear SVM re-trained on the
in-the-wild dataset.

d
w

t
t
f

u

T
b
e

b
t
i
t
w

ery similar features as those in the FakeInstaller family. For
xample, after looking into these malware, we found one of
heir main activities is to send SMS messages to Premium-rate
umbers, which is a typical feature of FakeInstaller malware.

Regarding the runtime performance, the averaged time of
earning from all the training samples for the classifiers as-
igned to the assembly and XML string-based sub-fingerprints
s 7.86 s and 0.24 s, respectively. This shows that the utilized

A classifier, which is of linear model, can efficiently process
 training dataset of up to 5000 samples. An accompanying
enefit is more freedom of choosing the size of the mini-batch

hen incremental learning is used for a large dataset.

.3.2. Malware detection

e further performed two sets of experiments to evaluate the
ffectiveness of our method on malware detection, which is
ompared with two recent incremental learning-based mal-
are detection methods (Narayanan et al., 2017; 2016) by us-

ng the same dataset. The method proposed in Narayanan

t al. (2016) extracts features from inter-procedural control-
ow graphs and continuously retrain a PA-based model upon

eceiving each new sample, while the method proposed in

arayanan et al. (2017) leverages a specifically designed kernel
o capture both structural and contextual information from

PI dependency graphs as features and continuously retrain

n online CW classifier (Dredze et al., 2008) upon receiving
ach new sample.

The first set of experiments was on the 5375 malware sam-
les from Drebin dataset and 5000 benign applications cre-
ted at the same time as Drebin malware (i.e., from 2010 to
012). These benign applications were also verified with Virus-
otal and not reported by any scanner as malicious. Same as
n Narayanan et al. (2017) , 70% of the samples in the evalua-
ion dataset were used to train and 30% samples were used to
est, with the procedure repeated 5 times and the results av-
raged. The experimental results are listed in Table 9 . As the
ombination function of average of scores and majority voting
re essentially the same, only the results for the former are
resented. It can be seen that the combination of assembly
nd XML string-based sub-fingerprints with average of scores
chieved the best result, with F 1 -score and accuracy both be-
ng 99.2%. This result is close to the best result of Narayanan

t al. (2017) which achieved F 1 -score of 99.23% using the same
atch-learning setup and on the same dataset.

The second set of experiments was performed in the
anner of incremental learning, which is on the in-the-wild
ataset. We divided the dataset into mini-batches, each of
hich contains samples of 5 days. As a result, there is a to-

al of 45 mini-batches. The first mini-batch is only used to
rain the initial model, while starting from the 2nd batch, be-
ore each batch is fed to the classifier for training, it will be
sed to test the prediction accuracy of the existing model.
he experimental results for the assembly and XML string-
ased sub-fingerprints as well as their combination with av-
rage of scores are shown in Fig. 4 (a). The results of the com-
ination based on maximum of scores are always inferior
o those based on average of scores, and hence not plotted

n the figure for clarity. It can be observed that the detec-
ion accuracy of using the XML string-based sub-fingerprint
as noticeably better than that of using the assembly-based

c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 2 0 – 1 3 3 129

sub-fingerprint most of the time, and was very close to that
of using the combined sub-fingerprints. Considering the com-
bined sub-fingerprints, the detection accuracy for the last 7
mini-batches stays above 82.4% and for the final batch is
86.2%.

To examine the capability of the proposed method in
adapting to different features of new applications, we replaced
the PA classifiers used in our method with linear SVM classi-
fiers (being the canonical batch learner), trained these clas-
sifiers with only the 1st mini-batch, and then tested the de-
tection accuracy with the remaining 44 mini-batches. The
experimental results for the assembly and XML-based sub-
fingerprints as well as their combination with average of
scores are shown in Fig. 4 (b). It can be observed that the de-
tection accuracy of the SVM-based model drops as the time of
creation of the testing samples gets more distant. This shows
that new features emerge in the later testing samples. In con-
trast, the PA classifiers used in our method generally exhibit
an ascending trend in terms of detection accuracy, meaning
that our incrementally trained PA-based model can properly
adapt to those new features.

On the other hand, we also experimented on re-training
the linear SVM classifiers with all previous mini-batches and
testing the detection accuracy with the following mini-batch.
As the memory consumption increased fast for the growing
training data set, our experimental setup (with 16 GB memory)
can only afford the re-training of the SVM classifier for the as-
sembly based sub-fingerprint up to the first 22 mini-batches of
samples. Nonetheless, as the XML string based sub-fingerprint
is sparser than the assembly based and consumes less mem-
ory, we managed to finish its re-training for all the 45 mini-
batches. The experimental results are shown in Fig. 4 (c). As
the accuracy of the combined sub-fingerprints is close to that
of the XML string based sub-fingerprint for the first 22 mini-
batches, we expect them to be also close for the remaining
23 mini-batches. It can be seen that the achieved accuracy is
very similar to our incrementally trained PA, indicating that
our method does not really sacrifice the accuracy to achieve
better scalability.

In contrast, the incremental learning-based method in
Narayanan et al. (2016) , which also uses the PA-classifier and
was tested on the same dataset, achieved a final detection
accuracy of 84.29%. It is worth to highlight that the method
in Narayanan et al. (2016) achieved better variation than our
method, where its detection accuracy varies in the range of
80–85%. This may be due to their trained model being updated
for each tested sample, which makes the model adapt faster.
Nonetheless, we believe in a real-life scenario (e.g., thousands
of new applications are submitted to Google Play every day),
it would be infeasible to dissect each new sample and label it
immediately. Instead, accumulating the dissected and labeled
new samples into mini-batches and then feeding these mini-
batches to the classifiers should be a more practical setup.

4.4. Discussion

Besides achieving better accuracy compared to Karbab et al.
(2016) , our method avoids the possibly resource prohibitive
peer matching process between each AUT and the whole
database, as well as the need to determine a static threshold
for whether the AUT should be classified as a malware. In fact,
after being trained, the classifiers in our method can provide
almost immediate prediction for each AUT.

It should be noted that the n -gram size and bit-vector
length used to construct the application sub-fingerprints can
be adjusted based on actual trade-off between accuracy and
processing efficiency. The PA classifier used in our method can
be changed to any classifier that supports incremental learn-
ing. For example, the CW classifier proposed in Dredze et al.
(2008) may be used. Compared to the PA classifier, the CW clas-
sifier maintains an additional probabilistic measure of confi-
dence in each parameter, which allows it to update less confi-
dent parameters more aggressively than more confident ones.
As reported in Dredze et al. (2008) , the CW classifier achieved
superior classification accuracy and faster learning over the
PA classifier. In fact, by changing the PA-classifier used in
Narayanan et al. (2016) with a CW classifier, significantly bet-
ter malware detection accuracies were achieved (Narayanan
et al., 2017). Moreover, we use the simple combination func-
tions in our method to fuse the confidence scores from the
parallel classifiers due to their efficiency and achieved good re-
sults. A more sophisticated information fusion approach, such
as one based on the Dempster–Shafer theory (DST) (Shafer,
1976), can also be used. The DST is strong in combining evi-
dence obtained from multiple sources and managing the con-
flicts among them. It has been successfully applied to com-
bine results of multiple classifiers (Al-Ani and Deriche, 2002;
Liu et al., 2017; Zhang and Srihari, 2002) and helped improve
the detection accuracy of Android malware in several previous
works (Du et al., 2015; Wang et al., 2017).

On the other hand, the parallelized nature of our approach
not only allows the classifiers to be trained in parallel but
also enables our method to accommodate new features as ad-
ditional sub-fingerprints. For example, dynamic runtime be-
haviors of the application can be collected and added into
our method as an additional sub-fingerprint. This will help
enhance the capability of our method in detecting the mal-
ware that employs encryption, dynamic code loading or var-
ious sophisticated obfuscation techniques such as reflection
and bytecode encryption (Rastogi et al., 2013).

5. Related works

5.1. Malware detection

A large number of malware detection methods are based on
signature extraction and matching. A notable representative
is DroidAnalytics (Zheng et al., 2013), which proposed a three-
level signature generation scheme and used Jaccard similarity
to measure whether an AUT is similar to some malware. The
three-level signature is generated by building firstly the sig-
nature of a method based on API call sequences, then the sig-
nature of a class using the signatures of the underlying meth-
ods, and finally the application signature with all signatures
of its classes. Although proven effective, such methods have
the drawback of assigning equal weights to all signature bits
(i.e., features) and practically expensive signature matching
process.

130 c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 2 0 – 1 3 3

d
m
o
m
n
t

(

2
p
b
g
(
t
t
m

2
d
a
e
a
t
r
e
m
t
t

i
T
b
w
a

t
r

p
i
f
c
a
b
b
(
u
t
i
a
p
a
e

t

o
u
A
e
p
a
t
n

t
t
o
d
n
w
m
c

w

F
c
w
t

m
i
t
m
e
fl

b
f
d
t
e
n
t
u

5

A
t
m
t

T
t
t
f
u
i

m
e
f
t
t
c
S

o

w
t
u
a
a
a

t

2
i
m

As machine learning algorithms can automatically distill
iscriminating features and avoid the expensive signature
atching process, numerous machine learning-based meth-

ds were proposed. Depending on the utilized features, these
ethods can be mainly divided into static analysis based, dy-

amic analysis based, and a hybrid type. A good survey of
hese methods can be found in Egele et al. (2012) ; Li et al.
2016) ; Sufatrio et al. (2015) . For instance, Drebin (Arp et al.,
014) extracted features such as permissions, hardware com-
onents, filtered intents, API calls, and network addresses
ased on static analysis and used a linear SVM to distin-
uish between malware and benign applications. Crowdroid

 Burguera et al., 2011) extracted dynamic features by moni-
oring system calls and used k -means algorithm to separate
he malware from benign applications. Static analysis-based

ethods face challenges from code obfuscation (Rastogi et al.,
013) and dynamic code loading (Poeplau et al., 2014), while
ynamic analysis-based ones usually have limited code cover-
ge and may be bypassed by various evasion techniques (Diao
t al., 2016; Vidas and Christin, 2014). As a result, methods such

s Marvin (Lindorfer et al., 2015) proposed to combine the fea-
ures from both static analysis and dynamic analysis so as to
efine the malware detection accuracy. Apart from the inher-
nt features extracted from applications, there have also been

ethods (Martn et al., 2017; Teufl et al., 2016) exploiting fea-
ures based on application metadata available in the applica-
ion market (e.g., Google Play) such as application description,
nformation about the developer, and application ratings. In

eufl et al. (2016) , the authors suggested that the metadata-
ased method should be an essential part of a complete mal-
are detection chain which includes the static and dynamic

nalysis-based methods described above.
Instead of simply concatenating the different sets of fea-

ures described above and training a single classifier, some
ecent methods (Du et al., 2015; Wang et al., 2018; 2017) pro-
osed to train a dedicated classifier for each set of features. For

nstance, DroidEnsemble (Wang et al., 2018) extracted string
eatures (e.g., permissions, filtered intents, and restricted API
alls) and structural features (i.e., function call graph) and

chieved improved malware detection accuracy with ensem-
le of results from two classifiers. All these methods use
atch-learning based classifiers, such as SVM, Random Forest

RF), and K-nearest neighbor (KNN). In contrast, our method

tilizes online classifiers, where the incremental learning fea-
ure makes our method scales better for the massive samples
n practice and avoids the need of re-training the model with

ll previous samples. Moreover, for each set of features, it is
ossible to utilize heterogeneous classifiers with diverse char-
cteristics to enhance malware detection accuracy (Yerima
t al., 2014). Such a design can be easily applied to our model
o further improve the detection accuracy.

The machine learning-based methods described above rely
n a hand-engineered feature set. Inspired by the success of
sing n -gram analysis to detect computer malware (Abou-
ssaleh et al., 2004; Masud et al., 2008), several works (Canfora
t al., 2015; Kang et al., 2016; McLaughlin et al., 2017) pro-
osed to leverage the merits of combining n -gram analysis
nd machine learning algorithms for android malware detec-
ion. To counter the problem of excessive number of unique
 -grams, which will cause a huge overhead during the model
raining process, these methods usually use feature selec-
ion techniques such as information gain to distill and keep

nly the high ranked n -grams as features. Nonetheless, as An-
roid malware keeps on evolving, the discarded lower ranked

 -grams may represent discriminating features of new mal-
are. In this regard, the feature hashing technique used in our
ethod can better accommodate the changes of application

haracteristics.
There has been a rising concern about the impact of mal-

are’s rapid evolution on the accuracy of the learned model.
or instance, Transcend (Jordaney et al., 2017) statistically
ompared samples encountered after the model is deployed

ith those used to train the model and measured the predic-
ion quality so as to raise a red flag before the model starts

aking consistently poor decisions due to out-of-date train-
ng. An orthogonal direction is to build a sustainable model
hat can automatically adapt to new characteristics of future

alware. Examples are the PA-based method in Narayanan

t al. (2016) which uses features from inter-procedural control-
ow graphs and the online CW classifier (Dredze et al., 2008)
ased method in Narayanan et al. (2017) which is based on

eatures from structural and contextual information of API
ependency graphs. Both method incrementally update the
rained model for each new sample. To the best of our knowl-
dge, our method is the first work which proposes to combine
 -gram analysis and incremental learning so that new charac-
eristics of future malware can be automatically distilled and

tilized for malware detection.

.2. Malware family attribution

lthough most of the malware detection methods can be po-
entially used for malware family attribution, their perfor-

ance in terms of accuracy and efficiency may not be satisfac-
ory due to the higher complexity of the multi-class problem.
here are several methods in literature that are tailored for

his task. DroidLegacy (Deshotels et al., 2014) proposed to ex-
ract API calls used by malicious modules to create malware
amily signatures and then match the API called by each mod-
le of an AUT against the signatures of known malware fam-

lies. If the Jaccard similarity of the API called by any of its
odules against the API calls in one malware family signature

xceeds some threshold, the AUT is deemed a member of the
amily. Dendroid (Suarez-Tangil et al., 2014b) proposed to ex-
ract control flow graph (CFG)-based code structure informa-
ion to characterize each malware family and then use a 1-NN

lassifier to compute the predicted family for each AUT. Droid-
IFT (Zhang et al., 2014) proposed to classify the AUT based
n the extracted weighted contextual API dependency graphs,
hich considers both dependencies among the API calls and

he context of a specific API call being triggered (e.g., through

ser interfaces or background callbacks). Despite of being also
 static analysis-based method, as the constructed features
re based on behavior graphs, DroidSIFT has good immunity
gainst byte-code level transformation attacks.

To better counter with continuously improved obfuscation

echniques (Balachandran et al., 2016; Suarez-Tangil et al.,
014a), DroidScribe (Dash et al., 2016) used runtime behav-
ors observed during dynamic analysis to classify Android

alware into families, where features such as pure system

c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 2 0 – 1 3 3 131

calls, decoded binder communication and abstracted behav-
ioral patterns were fed to an SVM-based multi-class classi-
fier. A statistical mechanism was used to evaluate the clas-
sification quality and Conformal Prediction (Vovk et al., 2005)
was selectively applied to refine the classification whenever
the results for SVM is statistically unreliable. As our method
is easy to be extended by adding new features as extra sub-
fingerprints, in practice, specific static features such as the be-
havior graph-based ones and dynamic features can be used as
additional sub-fingerprints, which helps further improve the
accuracy of malware detection and family attribution.

6. Conclusion

In this paper, we presented a parallel Passive Aggressive
classifier-based approach for Android malware detection and
family attribution. With the application features captured and
stored in the multi-level n -gram-based fingerprint and the
automatic feature distilling capability of the classifiers, our
method achieves a high accuracy in detecting malware and
attributing it to the corresponding family. The parallelized de-
sign of the classifiers not only helps magnify the impact of
the malware-distinguishing features, but also allows the clas-
sifiers to be trained in parallel and hence enhances the effi-
ciency. Besides making our method scales well and capable of
handling the huge number of applications in real life, the in-
cremental learning enabled by the utilized online classifiers
also facilitates the built model to continuously adapt to new
features in applications and retain classification accuracy. On
the other hand, our method can be easily expanded, where
other information such as dynamic runtime analysis-based
features can be added as extra sub-fingerprints. This will be
part of our future work.

Acknowledgment

This material is based on research work supported by the
Singapore National Research Foundation under NCR Award
No. NRF2014NCR-NCR001-034 .

R E F E R E N C E S

Aafer Y , Du W , Yin H . Droidapiminer: mining api-level features
for robust malware detection in android. In: Proceedings of
the international conference on security and privacy in

communication systems; 2013. p. 86–103 .
Abou-Assaleh T , Cercone N , Keselj V , Sweidan R . N-gram-based

detection of new malicious code, 2. IEEE; 2004. p. 41–2 .
Afonso VM , de Amorim MF , Grégio ARA , Junquera GB , de Geus PL .

Identifying android malware using dynamically obtained

features. J Comput Virol Hacking Tech 2015;11(1):9–17 .
Al-Ani A , Deriche M . A new technique for combining multiple

classifiers using the dempster-shafer theory of evidence. J
Artif Intell Res 2002;17:333–61 .

Allix K , Bissyandé TF , Jérome Q , Klein J , Le Traon Y , et al .
Empirical assessment of machine learning-based malware
detectors for android. Empir Softw Eng 2016;21(1):183–211 .

Arp D , Spreitzenbarth M , Hubner M , Gascon H , Rieck K ,
Siemens C . Drebin: effective and explainable detection of
android malware in your pocket. Proceedings of network and

distributed systems security(NDSS), 2014 .
Balachandran V , Tan DJ , Thing VL , et al . Control flow obfuscation

for android applications. Comput Secur 2016;61:72–93 .
Burguera I , Zurutuza U , Nadjm-Tehrani S . Crowdroid:

behavior-based malware detection system for android. In:
Proceedings of the ACM workshop on security and privacy in

smartphones and mobile devices; 2011. p. 15–26 .
Canfora G , De Lorenzo A , Medvet E , Mercaldo F , Visaggio CA .

Effectiveness of opcode ngrams for detection of multi family
android malware. In: Proceedings of the IEEE international
conference on availability, reliability and security (ARES);
2015. p. 333–40 .

Cavnar WB , Trenkle JM . N-gram-based text categorization. In:
Proceedings of 3rd annual symposium on document analysis
and information retrieval (SDAIR); 1994. p. 161–75 .

Cover TM . Geometrical and statistical properties of systems of
linear inequalities with applications in pattern recognition.
IEEE Trans Electron Comput 1965;14(3):326–34 .

Crammer K , Dekel O , Keshet J , Shalev-Shwartz S , Singer Y . Online
passive-aggressive algorithms. J Mach Learn Res
2006;7(Mar):551–85 .

Dash SK , Suarez-Tangil G , Khan S , Tam K , Ahmadi M , Kinder J ,
Cavallaro L . Droidscribe: classifying android malware based

on runtime behavior. In: Proceedings of the IEEE security and

privacy workshops (SPW); 2016. p. 252–61 .
Deshotels L, Notani V, Lakhotia A. Droidlegacy: automated

familial classification of android malware. In: Proceedings of
ACM SIGPLAN on program protection and reverse engineering
workshop.

Diao W , Liu X , Li Z , Zhang K . Evading android runtime analysis
through detecting programmed interactions. In: Proceedings
of the 9th ACM conference on security & privacy in wireless
and mobile networks. ACM; 2016. p. 159–64 .

Dredze M , Crammer K , Pereira F . Confidence-weighted linear
classification. In: Proceedings of the 25th international
conference on machine learning; 2008. p. 264–71 .

Du Y , Wang X , Wang J . A static android malicious code detection

method based on multi-source fusion. Secur Commun Netw

2015;8(17):3238–46 .
Egele M , Scholte T , Kirda E , Kruegel C . A survey on automated

dynamic malware-analysis techniques and tools. ACM

Comput Surv (CSUR) 2012;44(2):6 .
Gartner. Gartner says worldwide sales of smartphones grew 7

percent in the fourth quarter of 2016.
http://www.gartner.com/newsroom/id/3609817 .

Hanna S , Huang L , Wu E , Li S , Chen C , Song D . Juxtapp: a scalable
system for detecting code reuse among android applications.
In: Proceedings of the international conference on detection

of intrusions and malware, and vulnerability assessment;
2012. p. 62–81 .

Jang J , Brumley D , Venkataraman S . Bitshred: feature hashing
malware for scalable triage and semantic analysis. In:
Proceedings of the 18th ACM conference on computer and

communications security (CCS); 2011. p. 309–20 .
Jordaney R , Sharad K , Dash SK , Wang Z , Papini D , Nouretdinov I ,

Cavallaro L . Transcend: detecting concept drift in malware
classification models. Proceedings of the 26th USENIX security
symposium, 2017 .

Kang B , Yerima SY , McLaughlin K , Sezer S . N-opcode analysis for
android malware classification and categorization. In:
Proceedings of the IEEE international conference On cyber
security and protection of digital services; 2016. p. 1–7 .

Karbab EB , Debbabi M , Mouheb D . Fingerprinting android

packaging: generating dnas for malware detection. Digit
Investig 2016;18:33–45 .

Larson RR . Introduction to information retrieval. J Am Soc Inf Sci
Technol 2010;61(4):852–3 .

Li L , Bissyande TFDA , Papadakis M , Rasthofer S , Bartel A ,

https://doi.org/10.13039/501100001381
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0017
http://www.gartner.com/newsroom/id/3609817
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0024

132 c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 2 0 – 1 3 3

L

L

L

M

M

M

N

N

P

P

P

R

S

S
S

S

S

S

S

T

T

V

V

W

W

W

Y

Y

Y

Z

Z

Z

Z

L
N
2
i
m
r
t
r

D
p
a
S
p

M
v

Octeau D , Klein J , Le Traon Y . In: Technical Report. Static
analysis of android apps: a systematic literature review; 2016 .

indorfer M , Neugschwandtner M , Platzer C . Marvin: efficient and

comprehensive mobile app classification through static and

dynamic analysis, 2; 2015. p. 422–33 .
iu Z , Pan Q , Dezert J , Martin A . Combination of classifiers with

optimal weight based on evidential reasoning. IEEE Trans
Fuzzy Syst 2017;26(3):1217–30 .

ueg C. 8,400 new android malware samples every day.
https://www.gdatasoftware.com/blog/2017/04/
29712- 8- 400- new- android- malware- samples- every- day .

artn I , Hernndez J , Muoz A , Guzmn A . Android malware
characterization using metadata and machine learning
techniques. ArXiv e-prints 2017 .

asud MM , Khan L , Thuraisingham B . A scalable multi-level
feature extraction technique to detect malicious executables.
Inf Syst Front 2008;10(1):33–45 .

cLaughlin N , Martinez del Rincon J , Kang B , Yerima S , Miller P ,
Sezer S , Safaei Y , Trickel E , Zhao Z , Doupe A , et al . Deep

android malware detection. In: Proceedings of the seventh

ACM on conference on data and application security and

privacy (CODASPY); 2017. p. 301–8 .
arayanan A , Chandramohan M , Chen L , Liu Y . Context-aware,

adaptive, and scalable android malware detection through

online learning. IEEE Trans Emerg Top Comput Intell
2017;1(3):157–75 .

arayanan A , Yang L , Chen L , Jinliang L . Adaptive and scalable
android malware detection through online learning. In:
Proceedings of the IEEE international joint conference on

neural networks (IJCNN); 2016. p. 2484–91 .
edregosa F , Varoquaux G , Gramfort A , Michel V , Thirion B ,

Grisel O , Blondel M , Prettenhofer P , Weiss R , Dubourg V , et al .
Scikit-learn: machine learning in python. J Mach Learn Res
2011;12(Oct):2825–30 .

oeplau S , Fratantonio Y , Bianchi A , Kruegel C , Vigna G . Execute
this! analyzing unsafe and malicious dynamic code loading in

android applications., 14; 2014. p. 23–6 .
ulseSecure. Pulse secure releases first mobile threat report; finds

391 percent increase of unique malicious applications
developed in 2014. https://www.pulsesecure.net/news-events/
press-releases/pulse-secure-releases-first-mobile-threat
-report-finds-391-percent-increase-of---11g037804-001 .

astogi V , Chen Y , Jiang X . Droidchameleon: evaluating android

anti-malware against transformation attacks. In: Proceedings
of the ACM SIGSAC symposium on information, computer
and communications security; 2013. p. 329–34 .

anz B , Santos I , Laorden C , Ugarte-Pedrero X , Bringas PG ,
Álvarez G . Puma: permission usage to detect malware in

android. In: Proceedings of the international joint conference
CISIS-ICEUTE-SOCO special sessions; 2013. p. 289–98 .

hafer G , 42. Princeton University Press; 1976 .
ingh A , Walenstein A , Lakhotia A . Tracking concept drift in

malware families. In: Proceedings of the 5th ACM workshop

on security and artificial intelligence; 2012. p. 81–92 .
uarez-Tangil G , Tapiador JE , Peris-Lopez P . Stegomalware:

playing hide and seek with malicious components in

smartphone apps. In: Proceedings of the international
conference on information security and cryptology; 2014a.
p. 496–515 .

uarez-Tangil G , Tapiador JE , Peris-Lopez P , Blasco J . Dendroid: a
text mining approach to analyzing and classifying code
structures in android malware families. Expert Syst Appl
2014b;41(4):1104–17 .

ufatrio , Tan DJ , Chua TW , Thing VL . Securing android: a survey,
taxonomy, and challenges. ACM Comput Surv (CSUR)
2015;47(4):58 .

un M , Li X , Lui JC , Ma RT , Liang Z . Monet: a user-oriented

e
L

behavior-based malware variants detection system for
android. IEEE Trans Inf Forensics Secur 2017;12(5):1103–12 .

eufl P , Ferk M , Fitzek A , Hein D , Kraxberger S , Orthacker C .
Malware detection by applying knowledge discovery
processes to application metadata on the android market
(google play). Secur Commun Netw 2016;9(5):389–419 .

he Hacker News. Beware! new android malware infected 2
million google play store users. http://thehackernews.com/
2017/04/android-malware-playstore.html .

idas T , Christin N . Evading android runtime analysis via
sandbox detection. In: Proceedings of the 9th ACM

symposium on information, computer and communications
security. ACM; 2014. p. 447–58 .

ovk V , Gammerman A , Shafer G . Algorithmic learning in a
random world. Springer Science & Business Media; 2005 .

ang W , Gao Z , Zhao M , Li Y , Liu J , Zhang X . Droidensemble:
detecting android malicious applications with ensemble of
string and structural static features. IEEE Access
2018;6:31798–807 .

ang X , Zhang D , Su X , Li W . Mlifdect: android malware
detection based on parallel machine learning and information

fusion. Secur Commun Netw 2017;2017 .
einberger K , Dasgupta A , Langford J , Smola A , Attenberg J .

Feature hashing for large scale multitask learning. In:
Proceedings of the 26th annual international conference on

machine learning; 2009. p. 1113–20 .
erima SY , Sezer S , Muttik I . Android malware detection using

parallel machine learning classifiers. In: Proceedings of IEEE
international conference on next generation mobile apps,
services and technologies (NGMAST); 2014. p. 37–42 .

erima SY , Sezer S , Muttik I . High accuracy android malware
detection using ensemble learning. IET Inf Secur
2015;9(6):313–20 .

uan GX , Ho CH , Lin CJ . Recent advances of large-scale linear
classification. Proc IEEE 2012;100(9):2584–603 .

hang B , Srihari SN . Class-wise multi-classifier combination

based on dempster-shafer theory, 2; 2002. p. 698–703 .
hang M , Duan Y , Yin H , Zhao Z . Semantics-aware android

malware classification using weighted contextual api
dependency graphs. In: Proceedings of ACM SIGSAC

conference on computer and communications security; 2014.
p. 1105–16 .

heng M , Sun M , Lui JC . Droid analytics: a signature based

analytic system to collect, extract, analyze and associate
android malware. In: Proceedings of the IEEE international
conference on trust, security and privacy in computing and

communications (TrustCom); 2013. p. 163–71 .
hou Y , Jiang X . Dissecting android malware: characterization

and evolution. In: Proceedings of the IEEE symposium on

security and privacy (SP); 2012. p. 95–109 .

i Zhang received the B.Eng. (Hons.) and Ph.D. degrees from

anyang Technological University (NTU), Singapore, in 2010 and

015, respectively. He served as a security evaluator for smart cards
n UL before joining the Cyber Security and Intelligence Depart-

ent at the Institute for Infocomm Research (I2R), A

∗STAR as a
esearch scientist. His research interests include vulnerability de-
ection, malware analysis and classification, and hardware secu-
ity and trust.

r. Vrizlynn Thing is the Head of Cyber Security & Intelligence De-
artment at the Institute for Infocomm Research, A

∗STAR. She is
lso an Adjunct Associate Professor at the National University of
ingapore, and holds the appointment of Honorary Assistant Su-
erintendent of Police (Specialist V) at the Singapore Police Force,
inistry of Home Affairs. During her career, she has taken on

arious roles to lead and conduct cyber security R&D that ben-
fits our economy and society. She participates actively as the
ead Scientist of collaborative projects with industry partners and

http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0026
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0033
https://www.pulsesecure.net/news-events/press-releases/pulse-secure-releases-first-mobile-threat-report-finds-391-percent-increase-of�11g037804-001
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0038
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0042
http://thehackernews.com/2017/04/android-malware-playstore.html
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0043
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0043
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0043
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0044
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0044
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0044
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0044
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0045
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0045
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0045
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0045
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0045
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0045
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0045
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0046
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0046
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0046
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0046
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0046
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0047
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0047
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0047
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0047
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0047
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0047
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0048
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0048
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0048
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0048
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0049
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0049
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0049
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0049
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0050
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0050
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0050
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0050
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0051
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0051
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0051
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0052
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0052
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0052
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0052
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0052
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0053
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0053
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0053
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0053
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0054
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0054
http://refhub.elsevier.com/S0167-4048(18)30419-X/sbref0054

c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 2 0 – 1 3 3 133

government agencies, and takes on advisory roles at the national
and international level.

Yao Cheng received her Ph.D. degree in Computer Science and
Technology from University of Chinese Academy of Sciences in
2015. She is currently a scientist at Institute for Infocomm Re-
search, A

∗STAR, Singapore. Her research interests are in the infor-
mation security area, focusing on vulnerability analysis, privacy
leakage and protection, malicious application detection, and us-
able security solutions.

	A scalable and extensible framework for android malware detection and family attribution
	1 Introduction
	2 Android application basics and fingerprint generation
	2.1 Android application basics
	2.2 Application fingerprint generation

	3 The parallel online classifiers based approach
	3.1 The training stage
	3.2 The decision stage

	4 Evaluation and discussion
	4.1 Experimental setup and dataset
	4.2 Evaluation on the AMGP dataset
	4.3 Evaluation on the Drebin and in-the-wild dataset
	4.3.1 Malware family attribution
	4.3.2 Malware detection

	4.4 Discussion

	5 Related works
	5.1 Malware detection
	5.2 Malware family attribution

	6 Conclusion
	 Acknowledgment

	Reference

